Ross Brown Sales Pty. Ltd

Product Bulletin

Model: 119623-00 - 7610142

DESCRIPTION

- Two stage
- 240 volts
- 5.7"/145 mm diameter
- Double balll bearings
- Single speed
- Thru-flow discharge
- Aluminum fan bracket
- Aluminum commutator bracket

DESIGN APPLICATION

- Equipment operating in environments not requiring separation of working air from motor ventilating air

- Designed to handle clean, dry, filtered air only

SPECIAL FEATURES

- Suitable for 240 volt AC operation, 50/60 Hz
- UL Recognized, category
- PGRY2 (E47185)
- Skeleton-frame design
- Provision for grounding
- The Lamb Electric vacuum motor line offers a wide range of performances levels to meet design needs

TYP	YPICAL MOTOR PERFORMANCE.*										At 240 volts, 60Hz, test data is corrected to standard conditions of 29.92 Hg, 68° F.)								8° F.)						
ſ		100 -	-													- 13	20		Orifice	Amps	Watts	RPM	Vac	Flow	Air
		00 -						_		/ac									(Inches)		(In)		(In.H2O)	(CFM)	Watts
		90						-	+ F	low						+ 10	00		2.000	3.8	858	19236	3.4	97.1	39
		- 00) III,									\vdash			1			1.750	3.8	861	19244	5.9	97.0	67
Α	420	70 -		ر ا							\mathbf{r}				-	7 80	80		1.500	3.8	863	19240	10.2	92.5	111
S	hes h	60 -								X	ſ					1	CFM		1.250	3.8	864	19208	17.9	85.1	179
Т	Inc	50 -					┝╺┻╮									- 60 š	0 %		1.125	3.8	862	19224	23.3	78.5	215
М	acuun	40 -						$\mathbf{\mathcal{X}}$								╡.	Air FI		1.000	3.8	857	19278	29.8	69.9	245
	Va	30 -	-				\checkmark	1			L					+ 40	0		0.875	3.7	845	19420	37.5	59.8	263
D		20 -				\checkmark	[1 20	0		0.750	3.6	814	19833	44.6	47.8	250
Α		10 -			\checkmark	1										- 2	0		0.625	3.4	771	20453	52.5	35.9	221
Т		0 -		r										-		40			0.500	3.1	717	21316	60.6	24.6	175
Α			00	20	75	00	25	20	75	8	25	20	00	20	8				0.375	2.8	660	22361	68.8	14.9	120
			0.0	0.2	0.3	0.5	0.6	0.7	0.8	1.0	<u>.</u>	1.2	<u>۲</u>	1.7	2.0				0.250	2.6	602	23547	76.6	7.3	66
								Orifice	Diamet	er (Inch	nes)								0.000	2.4	557	24200	87.5	0.0	0
																		_							

Orifice	Amps	Watts	RPM	Vac	Flow	Air
(mm)		(In)		(mm H2O)	(L/Sec)	Watts
48.0	3.8	859	19240	115	45.8	51
40.0	3.8	862	19241	226	44.3	98
30.0	3.8	863	19217	530	38.5	199
23.0	3.7	848	19385	904	29.4	259
19.0	3.5	813	19845	1137	22.4	249
16.0	3.4	773	20428	1325	17.2	222
13.0	3.1	722	21230	1519	12.1	180
10.0	2.9	669	22204	1716	7.7	128
6.5	2.6	605	23488	1936	3.6	69
0.0	2.4	557	24200	2223	0.0	0

Note: Metric performance data is calculated from the ASTM data above.

* Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due to normal manufacturing variations.

Test Specs:	240 volts	Minimum Sealed Vacuum:	81.0"	ORIFICE:	13mm	Minimum Vacuum:	58.0"	Maximum Watts:	790
-------------	-----------	------------------------	-------	----------	------	-----------------	-------	----------------	-----

PRODUCT BULLETIN

DIMENSIONS

NOTES:

- 1. LEADS: 18GA STRANDED. LEADS CAN BE ANY COLOR EXCEPT GREEN OR GREEN WITH YELLOW STRIPE.
- LEADS: 18GA STRANUED, LEADS CAN BE ANY COLOR EXCEPT GREEN ON GREEN WITH YELLOW STRIPE.
 GROUNDING OR EARTHING PROVISIONS: USE HOLES AS INDICATED FOR GROUNDING OR EARTHING.
 REFER TO APPROPRIATE LISTING OR REGULATORY AGENCY FOR PROPER METHOD OF GROUNDING OR EARTHING.
 MOTOR IDENTIFICATION: MANUFACTURER'S NAME, MODEL NUMBER, VOLTAGE, FREQUENCY, INSPECTOR'S CODE, DATE OF MANUFACTURER, AGENCY FOR ORDER, TO GRIGIN
 MOUNTING MUST NOT RESTRICT THIS DIAMETER.

IMPORTANT NOTE: Pictorial and dimensional data are subject to change without notice. Contact factory for current revision levels.

WARNING -AMETEK Lamb Electric thru-flow vacuum motors must never be used in applications in which wet or moist conditions are involved, where dry chemicals or other volatile materials are present, or where airflow may be restricted or blocked. Such motors are designed to permit the vacuumed air to pass over the electrical winding to cool it. Thus any foam, liquid (including water), dry chemical, or other foreign substance coming in contact with electrical conductors could cause combustion (depending on volatility) or electrical shock. Failure to observe these precautions could result in property damage and severe personal injury, including death in extreme cases. All applications incorporating Lamb Electric motors should be submitted to Underwriters Laboratories Inc. or other appropriate organizations or agencies for testing specifically related to the safety of your equipment.

Issued: May, 2002