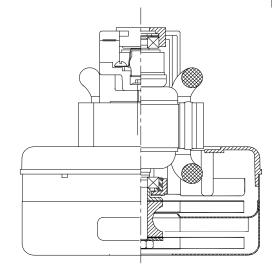
Product Bulletin

Ross Brown Sales Pty. Ltd

Model: 116311-10 - 7610056

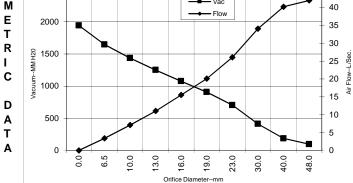

DESCRIPTION

- Two stage
- 120 volts 400 Hz Rectified
- 5.7"/145 mm diameter
- Carbon Brushes for 400 Hz-120V
- Double ball bearings
- Single speed
- Thru-flow discharge
- Aluminum fan end bracket
- Aluminum commutator bracket

DESIGN APPLICATION

- Equipment operating in environments not requiring separation of working air from motor ventilating air

- Designed to handle clean, dry, filtered air only



SPECIAL FEATURES

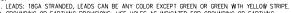
- Suitable for 120 volt 400 Hz
- Rectified operation,
- Full Wave Rectifier Bridge Required. - UL recognized, category PRGY2
- (E47185)
- CSA Certfied, class 1611 01 (LR31393)
- Provision for grounding
- Skeleton-frame design

- The Lamb Electric vacuum motor line offers a wide range of performance levels to meet design needs

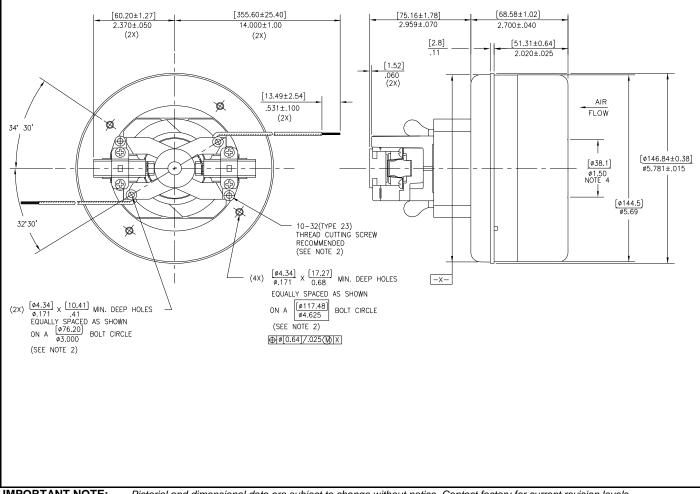
TYF	PICAL	MO	TOR	PE	RFO	RM	ANC	CE.*				(At	120	volts	, 400Hz-	Rectified, t	test data	is correct	ted to star	ndard conc	litions of 2	29.92 H
[100	Orifice	Amps	Watts	RPM	Vac	Flow	Air
	90														100	(Inches)		(In)		(In.H2O)	(CFM)	Watts
	80						-					~		•	90	2.000	6.0	656.5431	15970.72	2.9	89.2	30
۱ I	70						—	Flow				/		-	80	1.750	6.0	658.2627	15926.94	4.9	88.6	51
	o 60									×				-	70	1.500	6.0	661.8073	15852.88	8.3	83.7	82
	Ρ̈́								×	1				-	60	1.250	6.1	670.3334	15781.52	13.9	75.4	123
	se 50	†	-					×							- 50 P	1.125	6.1	667.7295	15794.37	18.0	69.5	147
	1 40							-							- 40 H	1.000	6.0	659.8666	15894.85	23.2	62.1	169
	40 ·														Air	0.875	5.9	645.1947	16110.23	29.1	52.9	181
	20					/								-	- 30	0.750	5.6	622.3771	16448.8	35.5	42.8	178
														-	20	0.625	5.3	588.0441	17000.96	42.6	32.5	162
	10		×									┣		_	- 10	0.500	5.0	548.6319	17738.47	49.9	22.3	131
	0	-	<u> </u>			10	-	10	-	10	-		-		- 0	0.375	4.6	505.066	18739.29	57.7	13.7	93
		0.000	0.250	0.375	0.500	0.625	0.750	0.875	000.1	1.125	1.250	1.500	1.750	2.000		0.250	4.2	466.4943	19793.2	65.2	6.8	52
		0	0	0	0	-	-	iameter	-Inche	s		`	`			0.000	3.9	435.9244	20839.82	76.5	0.0	0
	250	0							,					•	45	Orifice	Amps	Watts	RPM	Vac	Flow	Air
1									► Va ► Fl				-		- 40	(mm)		(In)		(mm H2O)	(L/Sec)	Watts

Orifice	Amps	Watts	RPM	Vac	Flow	Air
(mm)		(In)		(mm H2O)	(L/Sec)	Watts
48.0	6.0	657	15951	96	42.0	39
40.0	6.0	661	15875	186	40.2	73
30.0	6.1	669	15789	411	34.1	136
23.0	5.9	649	16056	703	26.0	178
19.0	5.6	622	16460	906	20.1	178
16.0	5.3	589	16979	1075	15.5	163
13.0	5.0	553	17665	1249	11.0	134
10.0	4.6	512	18589	1435	7.1	98
6.5	4.2	468	19741	1646	3.4	54
0.0	3.9	436	20840	1942	0.0	0

Note: Metric performance data is calculated from the ASTM data above.


* Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due to normal manufacturing variations. 60 Hz

Test Specs:	120 volts	Minimum Sealed Vacuum: NA	ORIFICE:	7/8 "	Minimum Vacuum: NA	Maximum Watts:	NA


PRODUCT BULLETIN

DIMENSIONS

NOTES:

- LEADS: 18GA STRANDED, LEADS CAN BE ANY COLOR EXCEPT GREEN OR GREEN WITH YELLOW STRIPE.
 LEADS: 18GA STRANDED, LEADS CAN BE ANY COLOR EXCEPT GREEN OR GREEN WITH YELLOW STRIPE.
 ORCUNDING OR EARTHING. PROVISIONS: USE HOLES AS INDICATED FOR GROUNDING OR EARTHING.
 REFER TO APPORPARIE LISTING OR REQULATORY ACRONCY FOR PROPER WETHOD OF GROUNDING OR EARTHING.
 MOTOR IDENTIFICATION: MANUFACTURER'S NAME, MODEL NUMBER, VOLTACE, FREQUENCY, INSPECTORS CODE, DATE OF MANUFACTURE, ACENCY RECOGNITION CODE, PLANT LOCATION CODE AND COUNTRY OF ORIGIN.
 MOUNTING MUST NOT RESTRICT THIS DAWETER.
 TO INSUER NORMAL OPERATING LIFE THE, HIS MOTOR MUST BE OPERATED AT 400Hz IN CONJUNCTION WITH A FULL WAVE BRIDGE (RECTIFIER).

IMPORTANT NOTE: Pictorial and dimensional data are subject to change without notice. Contact factory for current revision levels.

WARNING -AMETEK Lamb Electric thru-flow vacuum motors must never be used in applications in which wet or moist conditions are involved, where dry chemicals or other volatile materials are present, or where airflow may be restricted or blocked. Such motors are designed to permit the vacuumed air to pass over the electrical winding to cool it. Thus any foam, liquid (including water), dry chemical, or other foreign substance coming in contact with electrical conductors could cause combustion (depending on volatility) or electrical shock. Failure to observe these precautions could result in property damage and severe personal injury, including death in extreme cases. All applications incorporating Lamb Electric motors should be submitted to Underwriters Laboratories Inc. or other appropriate organizations or agencies for testing specifically related to the safety of your equipment.

Revised March 2016