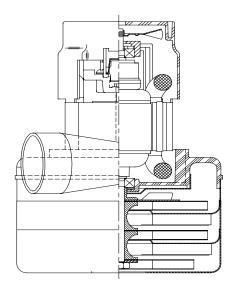


Model: 116515-13 - 7610113

116515-29* - 7610114


116515-32*

DESCRIPTION

- Three stage
- 24 volts
- 5.7"/145 mm diameter
- Double ball bearings
- Single speed
- Tangential bypass discharge
- Thermoset plastic fan end bracket
- Aluminum commutator bracket

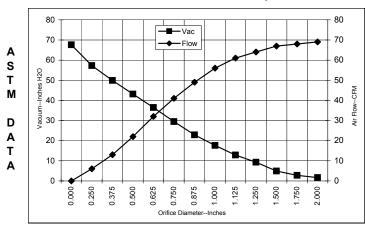
DESIGN APPLICATION

- Equipment operating in environments requiring separation of working air from motor ventilating air
- Designed to handle clean, dry, filtered air only

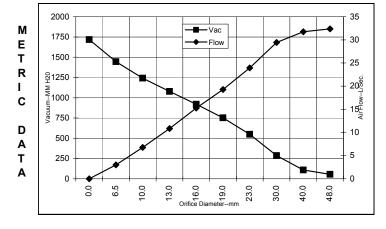
SPECIAL FEATURES

- Suitable for 24 volt DC operation
- UL Recognized, category PRGY2 (E47185)
- Provision for grounding
- Skeleton-frame design
- Epoxy painted fan case
- Patented air seal bearing

construction. U.S. Patent #4,088,424


- The Lamb Electric vacuum motor line offers a wide range of performance levels to meet design needs

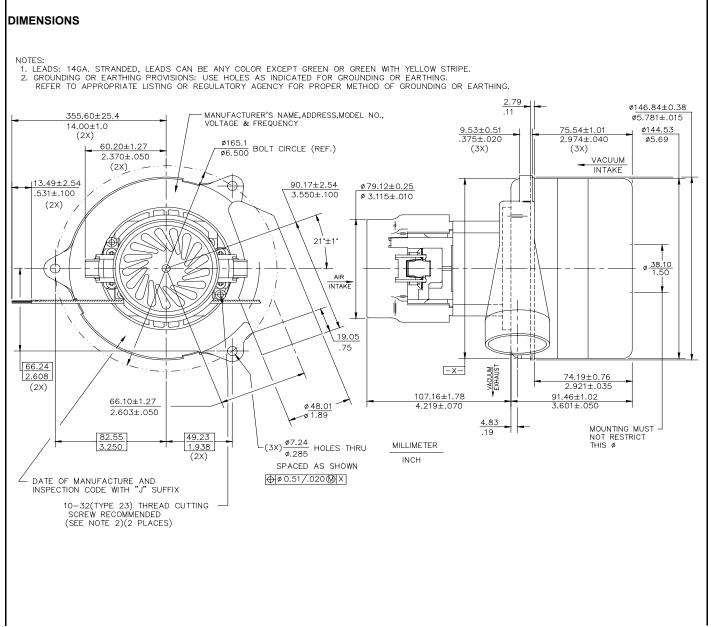
*Model 116515-29 features inlet tube 1.50" diameter x 1.0" long


*Model 116515-32 features inlet tube 1.89" diameter x 1.0" long

TYPICAL MOTOR PERFORMANCE.*

(At 24 volts, 60Hz, test data is corrected to standard conditions of 29.92 Hg, 68° F.)

Orifice (Inches)	Amps	Watts (In)	RPM	Vac (In.H2O)	Flow (CFM)	Air Watts	
2.000	20.9	535	12667	1.7	69.0	13	
1.750	21.0	537	12583	2.8	68.0	22	
1.500	21.0	540	12533	4.9	67.0	39	
1.250	21.4	545	12433 9.3 12383 12.9 12300 17.6	9.3	64.0 61.0 56.0 49.0	69 91 116 132	
1.125	21.5	549		12.9			
1.000	21.5	550		17.6			
0.875	21.5	548	12367	22.9			
0.750	21.0	537	12517	29.5	41.0	142	
0.625	20.4	522	12933	36.5	32.0	135	
0.500	19.4 499		13550 43.1		22.0	111	
0.375	18.3	471	14300	49.9	13.0	78	
0.250	17.1	443	15200	57.3	6.0	42	
0.000	16.1	419	16150	67.6	0.0	0	



Orifice (mm)	Amps	Watts (In)	RPM	Vac (mm H2O)	Flow (L/Sec)	Air Watts
48.0	20.9	536	12630	55	32.4	17
40.0	21.0	539	12548 12406	108	31.8	34 81
30.0	21.5	547		287	29.4	
23.0	21.5	549	12350	548	24.0	128
19.0	21.0	537	12525 12916	753	19.3 15.3 10.9	142 135 113
16.0	20.4	523		920		
13.0	.0 19.5	501	13488	1078		
10.0	10.0 18.5 475 6.5 17.2 444		14188	1242	6.8	83 44
6.5			15155	1446	3.0	
0.0	16.1	419	16150	1717	0.0	0

Note: Metric performance data is calculated from the ASTM data above.

^{*} Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due to normal manufacturing variations.

Te	est Specs:	24 volts	Minimum Sealed Vacuum:	62.0"	ORIFICE:	7/8 "	Minimum Vacuum:	19.5"	Maximum Watts:	640
----	------------	----------	------------------------	-------	----------	-------	-----------------	-------	----------------	-----

IMPORTANT NOTE: Pictorial and dimensional data are subject to change without notice. Contact factory for current revision levels.

WARNING - When using AMETEK Lamb Electric bypass motors in machines that come in contact with foam, liquid (including water), or other foreign substances, the machine must be designed and constructed to prevent those substances from reaching the fan system, motor housing, and electrical components. Lamb Electric vacuum motors other than hazardous duty models should not be applied in machines that come in contact with dry chemicals or other volatile materials. Failure to observe these precautions could cause flashing (depending on volatility) or electrical shock which could result in property damage and severe bodily injury, including death in extreme cases. All applications incorporating Lamb Electric motors should be submitted to appropriate organizations or agencies for testing specifically related to the safety of your equipment.

Issued: March, 1998